Role of Fractalkine/CX3CR1 Interaction in Light-Induced Photoreceptor Degeneration through Regulating Retinal Microglial Activation and Migration
نویسندگان
چکیده
BACKGROUND Excessive exposure to light enhances the progression and severity of some human retinal degenerative diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia, focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration. METHODOLOGY/PRINCIPAL FINDINGS Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague-Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor cell line (661W cell) was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1 neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble fractalkine resulted in fewer TUNEL-positive photoreceptors and an increased number of migratory microglia respectively. CONCLUSIONS/SIGNIFICANCE These findings demonstrate that fractalkine/CX3CR1 interaction may play an important role in the photoreceptor-microglia cross-talk in light-induced photoreceptor degeneration.
منابع مشابه
Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling
Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue 'Norgestrel' is neuroprotective in two mouse models of retinal d...
متن کاملFractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina
Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive degeneration of viable neurons. Norgestrel, a progesterone analogue, primes viable neurons against potential microglial damage. In the current study we wished to investigate this neuroprotective effect ...
متن کاملRole of fractalkine–CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain
Temporal lobe seizures lead to an acute inflammatory response in the brain primarily characterized by activation of parenchymal microglial cells. Simultaneously, degeneration of pyramidal cells and interneurons is evident together with a seizure-induced increase in the production of new neurons within the dentate gyrus of the hippocampus. We have previously shown a negative correlation between ...
متن کاملNeuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation.
PURPOSE To determine the role of microglial activation in light-induced photoreceptor degeneration and the neuroprotective effects of naloxone as a novel microglial inhibitor. METHODS Sprague-Dawley rats were exposed to intense blue light for 24 hours. Daily intraperitoneal injection of naloxone or PBS as a control was given 2 days before exposure to light and was continued for 2 weeks. Apopt...
متن کاملRole of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells.
We recently showed that subretinal CX3CR1-dependent microglial cell (MC) accumulation may lead to age-related macular degeneration. The fate of MC after engulfing retinal debris is poorly understood. Severe photoreceptor degeneration was observed 40days after exposure to bright light in CX3CR1-deficient but not control mice, and more MCs accumulated in the subretinal space of the former than th...
متن کامل